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Abstract. In the quest to build exascale supercomputers, designers are
increasing the number of hierarchical levels that exist among system
components. Software developed for these systems must account for the
various hierarchies to achieve maximum efficiency. The first step in this
work is to identify groups of processes that share common resources. We
develop, analyze, and test several algorithms that can split millions of
processes into groups based on arbitrary, user-defined data. We find that
bitonic sort and our new hash-based algorithm best suit the task.
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1 Introduction

Many of today’s clusters have a hierarchical design. For instance, typical multi-
core cluster systems have many nodes, each of which has multiple sockets, and
each socket has multiple compute cores. Memory and cache banks are distributed
among the sockets in various ways, and the nodes are interconnected through
hierarchical network topologies to transmit messages and file data.

Algorithmic optimizations often reflect the inherent topologies of these hi-
erarchies. For example, many MPI implementations [I] [2] [3] use shared mem-
ory to transfer data between processes that run within the same operating sys-
tem image, which typically corresponds to the set of processes that run on the
same compute node. This approach is considerably faster than sending messages
through the network, but the implementation must discover which processes
coexist on each node. Some collective algorithms consider the topology of the
network to optimize performance [4] [5]. As another example, fault-tolerance li-
braries must consider which processes share components that act as single points
of failure, such as the set of processes running on the same compute node, the
same network switch, or the same power supply [6] [7].

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
(LLNL-CONF-484653)
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The first step in these algorithms identifies the processes that share a common
resource. A process can often obtain information about the resource on which it
runs. However, obtaining information about the resources that other processes
in the job use is usually more difficult. We could issue a gather operation to
collect the resource information from all processes. However, this approach is
prohibitively expensive in both time and memory with millions of processes.

Alternatively, we can almost directly offload the problem to MPI_Comm_split
since each resource is often assigned a unique name. The challenge lies in mapping
the resource name, which may be arbitrary data like a URL string, into a unique
integer value that can be used as an MPI_Comm_split color value. We could hash
the resource name into an integer and then call MPI_Comm_split specifying the
hash value as the color. However, the hash function may produce collisions, in
which case, processes using different resources would be assigned to the same
group. We would need to refine this group, perhaps by applying a different hash
function and calling MPI_Comm_split again in a recursive manner. This process
is both cumbersome and inefficient.

We propose a cleaner, faster interface by extending MPI_Comm_split to enable
the user to provide arbitrary data for color and key values along with user-defined
functions that can be invoked to compare two values. MPI_Comm_split allows one
to split and to reorder processes. In our generalized interface, the caller may spec-
ify special parameter values to disable either the split or reorder functions. When
the reorder function is disabled, processes are ordered in their new group accord-
ing to their rank in the initial group. The reorder function is often unnecessary
and, by allowing the caller to disable it, we can split processes in logarithmic
time using a fixed amount of memory under certain conditions. Our key con-
tributions in this paper are: a generalized MPI_Comm_split operation; a scalable
representation for process groups; implementation of collectives using that repre-
sentation; implementation of several MPI_Comm_split algorithms; and large-scale
experiments of those algorithms. While existing algorithms for MPI_Comm_split
require O(N) memory and O(Nlog N) time in a job using N processes, we
present algorithms that require as little as O(1) memory and O(log N) time.

The rest of this paper is organized as follows. Section [2| discusses the linked
list data structure that we use to represent groups and illustrates how to imple-
ment collectives using it. Section [3] presents several algorithms for a generalized
MPI_Comm_split, and Section [4] presents experimental results.

2 Groups as chains

Each process in current MPI implementations typically stores group membership
information as an array that contains one entry for each process in the group.
This array maps a group rank ID to an MPI process address, such as a network
address, so that a message can be sent to the process that corresponds to a
given rank. Each process can quickly find the address for any process in the
group using this approach. However, it requires memory proportional to the
group size, which is significant at large scales.
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output=10 output=20 output=50 output=60
scan (input, output, chain) { left = NULL left = OxA left = OxB left = OxC
output = input right = OxB right = OxC right = 0xD right=NULL
left = chain.left
right = chain.right N . N
) . {10,NULL}' {Z0,0xA}' {50, OXB}'
v(vh:l.le (left != NULL or right != NULL) J {0xC} / {0xD} / NULL}
if (right != NULL)
send {output, left} to right
output=10 output=30 output=70 output=110
if (left != NULL) left = NULL left = NULL left = OxA left = 0xB
send {right} to left right = 0xC right = 0xD right= NULL right= NULL
if (right != NULL) > _
recv {nextright} from right {10, NULL} 130, NULL} =
right = nextright
if (left != NULL} < — {NULL}
recv {data, nextleft} from left =
output += data
left = nextleft output= 10 output=30 output= 80 output= 140
} left = NULL left = NULL left= NULL left= NULL
} right= NULL right=NULL right= NULL right=NULL

(a) Pseudo code (b) Example on 4-process chain

Fig. 1: Inclusive scan on a chain

To represent process groups in a scalable way, we store the group mapping
as a doubly-linked list that is distributed across the processes of the group. Each
process represents a node in the list, and each records a small, fixed-size portion
of the group mapping consisting of the number of processes in the group, its
rank within the group, its process address, and the addresses of the processes
with a rank one less and one more than its own. We develop our algorithms on
top of MPI, so we simply record MPI rank IDs as process addresses. We refer to
this doubly-linked list as a chain.

Conceptually, we align the chain horizontally with increasing ranks from left
to right. Given a particular process as a reference, the left neighbor is the process
with rank one less and the right neighbor is the process with rank one greater.
The first rank of the group stores a NULL value as the address of its left neighbor,
and the last rank of the group stores this NULL value for its right neighbor.

Although this chain data structure limits the destinations to which a process
can directly address messages, many collectives can be implemented in logarith-
mic time by forwarding process addresses along with the messages that contain
the data for the collective. For example, in Figure [1| we illustrate how to im-
plement a left-to-right inclusive scan operation. With N processes in the chain,
this collective executes in [log N'| rounds, where in round ¢ € [0, [log N), each
process exchanges messages with left and right partners with ranks 2° less and
2¢ greater than its own. Each process first sets its left and right partners to be
its left and right neighbors in the chain, and each process initializes its current
scan result to the value of its contribution to the scan. Then a process sends
its current scan result to its right partner and appends the address of its left
partner to the message. The process also sends the address of its right partner
to its left partner.
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Each process combines the scan data that it receives from its left partner
with its current scan result and sets its next left partner to the address included
with that message. Each process also receives the incoming message from its
right partner to obtain the address of its next right partner. If the address for
the process on either side is NULL, the process does not exchange messages
with a process on that side. However, it forwards the NULL address values as
appropriate. After [log N| rounds, the current scan value on each process is its
final scan value.

One could similarly implement a right-to-left scan, and we use this technique
to implement a double scan, which executes a left-to-right scan simultaneously
with a right-to-left scan. Our algorithms use double scans to implement inclusive
scans, exclusive scans, and associative reduction operations that require O(1)
memory and run in O(log V) time. Further, we can implement tree-based collec-
tives on a chain, including gather, scatter, broadcast, and reduction algorithms.
Our group representation does not directly support general point-to-point com-
munication, but it is sufficient for all of the algorithms that we present.

3 Algorithms

3.1 Serial sort algorithms

Many existing MPI implementations first gather all color/key/rank tuples into
a table at each process to implement MPI_Comm_split. Each process extracts the
entries in the table with its color value and places those entries into another list.
Finally, each process sorts this list by key and then by rank using a serial sort
such as gsort. If N is the number of MPI processes, each process uses O(N)
memory to store the table and O(N log N) time to execute the sort.

We implement two variants of this algorithm. Our first variant, Allgather-
Group, executes an allgather using the chain to collect data to each process. Our
second variant, AllgatherMPI, calls MPI_Allgather. AllgatherMPI relies on the
optimized MPI library to collect the data to each process to show how much
we could optimize the communication in AllgatherGroup. Neither of these al-
gorithms will scale well to millions of processes in terms of memory or time.
However, we include them as a baselines since they emulate the algorithms used
in existing MPI implementations [1] [2] [3].

3.2 Parallel sort algorithms

Our second approach to split processes uses a parallel sort. Given a chain of
mixed colors and unordered keys, we can split and sort the chain into ordered
groups using a parallel sort, a double scan, and a few point-to-point messages.
First, each process constructs a data item that consists of its color value, its
key value, its rank within the input group, and its process address. We redis-
tribute these data among the processes using a parallel sort, such that the i*"
process from the start of the chain has the data item with the i*" lowest col-
or/key /rank tuple. Each process next exchanges its sorted data item with its left
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and right neighbors to determine group boundaries and neighbor processes. We
then use a double scan to determine rank IDs and the size of each group. A final
point-to-point message sends this information back to the process that originally
contributed the data item. Mellor-Crummey et al. proposed this approach for a
similar operation in Co-Array Fortran [§].

For this approach, we implement four different parallel sort algorithms. In our
first algorithm, GatherScatter, we use a tree communication pattern to gather
all data items to a root process. We sort items during each merge step of this
gather operation so that the items are sorted after the final merge at the root.
We then scatter the items from the root to the processes. Similar to our allgather
algorithms, GatherScatter uses O(NN) memory at the root, but it executes the
sort in O(N) time instead of O(N log N).

In our second parallel sort, we implement an algorithm that is similar to
the one that Sack and Gropp describe [9]. In this scheme, we gather the col-
or/key/rank tuples to a subset of processes that then execute Cheng’s algorithm
to sort them [I0]. We then scatter the data items back to the full process set. In
our tests, we set the maximum number of data items that a process may hold to
a fixed value, M. We use several different values ranging from 128 to 8192, and
we label each algorithm as ChengM. The number of processes, P, that perform
the sort is an important parameter this algorithm. These algorithms use O(%)
memory and O(Plog N + log® N + % log P) time.

Third, we implement Batcher’s bitonic sort [IT], which we label Bitonc. This
algorithm uses O(log N) memory and O(log? N) time.

Finally, for standard MPI_Comm_split, in which the color and key values are
integers, we implement a divide-and-conquer form of radix sort. This algorithm,
Radiz, splits chains into subchains based on the most significant bits of the key
values. We then recursively sort each subchain, and rejoin the sorted subchains
into a single, sorted chain. Radix uses O(1) memory and O(log N) time.

3.3 Hash-based algorithm

Our third method to split processes employs hashing. This method avoids sorting
processes when only a split is required. We first hash the color value of the calling
process to one of a small number of bins, ensuring that we assign the same color
value to the same bin on each process. Then, we execute a double exclusive scan
on the chain. For each direction, the scan operates on a table that includes an
entry for each bin. Each entry contains two values. The first value encodes the
address of the process that is assigned to that bin and is next in line along a
certain direction (left or right) from the calling process. The second value counts
the number of processes along a certain direction from the calling process that
belong to that bin.

Each process initializes all table entries to a NULL address and a zero count,
except for the entry corresponding to its bin, in which case it sets the address
field to its own address and sets the count field to one. We then perform the
double exclusive scan operation, after which the result of the left-to-right scan
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Initial chain w/ color values

0xB
C=8

Map color to bin w/ 2-bit mask

C=5=0101 ‘ C=8=1000 ‘ C=4=0100 C=3=0011 ‘ C=2=0010 ‘ C=5=0101
2> bin=1 > bin=2 2>bin=1 2> bin=0 > bin=0 2>bin=1
bin  addr cnt Left-to-right scan result
0 NULL | O NULL | O NULL | O NULL | O 0xD 1 OxE 2
1 NULL | O OxA 1 O0xA 1 0xC 2 0xC 2 0xC 2
2 NULL | O NULL | O 0xB 1 0xB 1 0xB 1 0xB 1
3 NULL | O NULL | O NULL | O NULL | O NULL | O NULL | O
Right-to-left scan result
0 0xD 2 0xD 2 0xD 2 OxE 1 NULL | O NULL | O
1 0xC 2 0xC 2 OxF 1 OxF 1 OxF 1 NULL | O
2 0xB 1 NULL | O NULL | O NULL | O NULL | O NULL | O
3 NULL | O NULL | O NULL | O NULL | O NULL | O NULL | O
Process at Process at Process at Process at Process at Process at
address OxA address OxB address OxC address 0xD address OXE address OxF

Chains resulting from first split

Chain for bin 0 Chain for bin 1 Chain for bin 2

Fig. 2: Splitting a 6-process chain using 4 bins

lists the address of the next process to the left and the number of processes to
the left of the calling process for each bin. Similarly, the result of the right-to-
left scan lists the address of the next process to the right and the number of
processes to the right of the calling process for each bin.

We then create chains that consist only of the processes mapped to a given
bin. Each process uses the address and count fields from the table entry corre-
sponding to its bin and assigns the process address from the left-to-right scan
to be its left neighbor and the process address from the right-to-left scan to be
its right neighbor. It sets its rank to be the value of the count field from the the
left-to-right scan and it adds one to the sum of the count fields from the left-
to-right and right-to-left scans to compute the total number of processes in its
chain. This operation splits the input chain into a set of disjoint chains, poten-
tially creating a new chain for each bin. This new chain may contain processes
with different colors. However, the hash function guarantees that all processes
with the same color value are in the same chain. An example split operation is
illustrated in Figure [2] in which the hash function uses the first two bits of a
4-bit color value to select one of four bins.

We then iteratively apply this split operation to the chains produced in the
prior step. Each iteration uses a new hash function so that processes that have
different colors eventually end up in separate chains. For this work, we pack
the color value into a contiguous buffer and then apply Jenkin’s one-at-a-time
hash [12] [13]. For different iterations, we apply the same hash function but
rotate the bytes of the packed color value and mask different regions of the hash
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--AllgatherMPI
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(a) Dawn BG/P (b) Sierra
Fig. 3: Time for reorder without split

value to obtain new bin numbers. If needed, we invoke a sort algorithm to finish
splitting and reordering the chains.

We implement two variants of this algorithm, Hash and Hash6/. Hash repeat-
edly applies the hash operation until the initial chain is completely split. Hash64
iterates until the chain is completely split or its length falls below a threshold
of 64 processes, at which point, we invoke AllgatherGroup to finish the split.
Each version stops iterating if a single color value is detected throughout the
chain. We check for this condition using an allreduce whenever a split iteration
does not reduce the length of the chain. If we need to reorder the chain after
completing the hash iterations, we use Bitonic sort. When reordering is required,
these algorithms have the same time and memory complexity as Bitonic. When
only a split is required, these algorithms use O(1) memory. Due to the nature of
hash functions, one may only determine probabilistic upper time bounds. How-
ever, one can show strict lower time bounds of £2(log” N) when the number of
groups equals the number of processes and 2(log N) when the number of groups
is small and independent of the number of processes.

4 Results

We test each algorithm on two clusters at Lawrence Livermore National Labo-
ratory. We use Dawn, an IBM BlueGene/P system that has 128K cores on 32K
nodes. The second system, Sierra, has over 1,800 compute nodes, each with two
Intel Xeon 5660 hex-core chips for a total over 21,600 cores. The Sierra nodes
are connected with QLogic QDR Infiniband.

We first investigate the performance of the various sorting algorithms. Dis-
abling the split, and using an integer value as the key, we show the time required
to complete a reorder operation on each platform in Figure[3] The two platforms
produce significantly different results. The plots all follow clear, distinct trends
on Dawn. However, on Sierra, the plots generally converge at higher process
counts, at which we conject that network contention limits performance. On
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Fig. 4: Time for split without reorder

both machines, the serial sort algorithms are best at small scale, but more scal-
able algorithms soon outperform them. On Dawn, Radix and Bitonic sort show
the best scaling trends. As expected, Radix sort, with its O(log N) complexity,
scales the best. However for all scales tested, Bitonic always has better perfor-
mance. At 16 processes, Bitonic is 5.5 times faster than Radix. The difference is
reduced to 3.0 times at 64K processes, but the hidden constants associated with
the big-O notation are too high for Radix to surpass Bitonic. At 64K processes
on Dawn, Bitonic sort is 100 times faster than the serial sort algorithms and 4.4
times faster than the fastest Cheng sort. Bitonic is still fast on Sierra, although
the apparent contention limits its performance. Regardless, on both machines,
the best approach is to use a serial sort algorithm for small scale and to switch
to Bitonic sort at large scale.

We next focus on the task of just splitting processes. We compare Bitonic,
the fastest parallel sort algorithm, to Hash and Hash64. To see how different
color datatypes impact the algorithms, we use character strings of length 5 and
of length 80 for color values. Figure [4] shows the results for Dawn. When the
number of process groups (the number of distinct colors) is on the order of
the number of processes, we find that the hash-based algorithms perform on
par with Bitonic sort. However, when the number of groups is small, the hash-
based algorithms outperform Bitonic with speedups between 1.7 and 2.1 at 64K
processes, depending on the length of the color value. The size of the color
value affects the performance of Bitonic, but it has little impact on Hash and
only impacts Hash64 in cases where it must call AllgatherGroup. Since the hash
operation always maps the color to an integer, its communication costs are not
affected by the size of the color value. However, the sort algorithms send the
color value in each message, so the cost of these algorithms increases with the
size of the color value. Hash or Hash64 perform the best in all cases shown.

We also tested Bitonic, Hash, and Hash64 for splitting and reordering pro-
cesses in the same operation. The results from Dawn are shown in Figure 5] We
used an integer value for the key and character strings of different lengths for
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Fig. 5: Time for split with reorder

color values. As shown in Figure with many groups, and when the groups
are roughly equal in size, the timing results look very similar to Figure
However, with only a small number of groups, as shown in Figure then
both hash algorithms require more time than Bitonic. In this case, we incur
overhead to execute the hash algorithm to split the initial chain, but since the
resulting subchains are relatively long, the split does not significantly reduce the
cost of sorting. Since we cannot know the size of the resulting groups a priori,
Bitonic is the best option whenever reordering is required. The peak for Hash64
at 1K processes in Figure is an artifact from a bug that invoked Allgath-
erGroup instead of Bitonic even though the chain was longer than 64 processes
after the split. This bug only affected the data points for 512 and 1K processes

in Figure

5 Conclusions

Developers will soon need scalable algorithms to split millions of processes into
groups based on arbitrary, user-defined data. In this work, we developed sev-
eral algorithms that represent groups as a doubly-linked list, and we investi-
gated their performance through large-scale experiments. We found that bitonic
sort and a new hash-based algorithm offer the best results. We find that the
hash-based algorithm is up to twice as fast as bitonic sort when only splitting
processes. Compared to algorithms used in current MPI implementations, these
new algorithms reduce memory complexity from O(N) to as little as O(1), and
they reduce run time complexity from O(N log N) to as little as O(log N).
Although we focus on algorithms for a generalized MPI_Comm_split interface,
our findings also apply to the simpler, standard MPT_Comm_split function. Thus,
we expect MPI implementations to benefit from our results. Further, we can
implement these algorithms and group representations directly in applications
that need fast methods to identify sets of processes. With this approach, appli-
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cations can create lightweight groups without the overhead of creating full MPI
communicators.
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